NCHRP PROJECT 25-34: SUPPLEMENTAL GUIDANCE FOR MODELING AREA SOURCES

Transportation Research Board ADC40 Committee Summer Meeting

Portsmouth, NH July 21, 2014

Douglas Barrett dbarrett@sid-inc.com

Presentation overview

- What are area sources?
- Issues when modeling with TNM
- Development of methodology/validation
- Guidance for:
 - Stationary sources
 - Accelerating and decelerating vehicles
 - Stop-and-go traffic

What are area sources?

Area sources include:

- toll facilities
- weigh stations

- service plazas
- park and ride lots

What characterizes area sources?

- Typical noise sources:
 - Low-speed traffic
 - Stop-and-go traffic
 - Accelerating vehicles
 - Decelerating vehicles
 - Idling vehicles (trucks, buses)

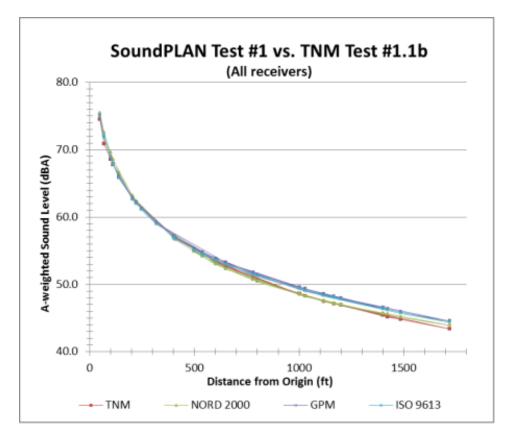
 Often no louder than mainline traffic, but may annoy nearby residents, particularly if closer than mainline

Issues when modeling with TNM

- TNM treats all sources as line sources
- TNM has no provision for modeling:
 - Stationary sources (e.g., idling trucks or buses)
 - Decelerating traffic
 - Stop-and go traffic (queues)

Modeling stationary sources

- Idling vehicles: service plazas, park-and-ride, weigh stations
- Typically quieter than moving traffic (no tire-pavement noise)



- When adjacent to noise-sensitive receptors and/or between receptors and the main roadway, modeling may be appropriate
- When adjacent to highways, mainline roadway may dominate noise levels, modeling may not be necessary

Stationary sources: development/validation

- No new source level measurements: used TNM REMELs; also "Advanced Approach" with user source measurements available as an option
- Used SoundPLAN to validate procedure with 3 different models for various geometries
- Excellent agreement with NORD 2000, ISO 9613, and General Prediction Method

Stationary sources: two options

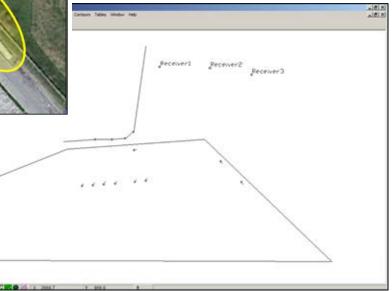
- "Standard Approach" uses TNM Reference Energy Mean Emission Levels (REMELs) for standard TNM vehicle types
- "Advanced Approach" provides procedure for creating user-defined vehicle type within TNM based upon emission level measurements conducted by the practitioner

Stationary sources: Standard Approach

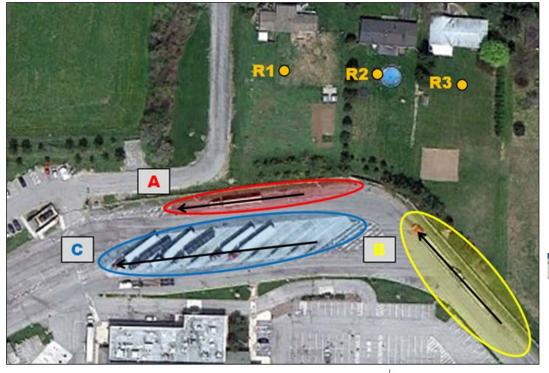
- Straight-forward, requires no special measurements or TNM modifications
- Appropriate for most situations involving standard TNM vehicle types
- Expected to be used mainly for idling heavy trucks, buses, etc.



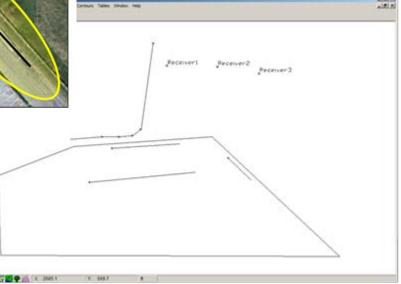
Roadway segments


- Segment(s) model geometric distribution of stationary sources
- Length varies depending upon the size and/or distribution of the modeled source(s):
 - Model a single heavy truck as a 10-foot long roadway segment
 - Model a line of idling heavy trucks or buses as a longer roadway segment
 - Model a large truck parking area as several roadway segments arranged in appropriate geometry

Modeling stationary sources (Example 1)

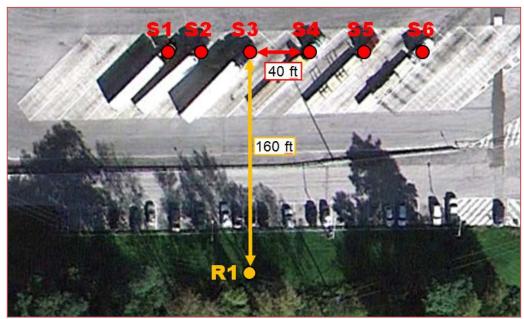


- Each truck modeled as an individual source
- Roadway segment length = 10 ft.



Modeling stationary sources (Example 2)

Each truck parking area modeled as a line source


Roadway segment lengths determined by actual geometry of parking areas

Array of single sources or line source?

- If distance from closest receiver to nearest noise source ≥ spacing between individual noise sources, line source may be substituted for array of individual sources
- Typically limits discrepancy between line source and corresponding array of individual sources to less than 1 dBA

Volume factors (VF)

- TNM does not accept input speeds of 0 mph. Instead, use 1 mph to provide 0 mph emission level
- VF = number of vehicles each moving at 1 mph, required to traverse roadway one at a time with one vehicle always present throughout 1-hour period
- VF depends only on length of modeled segment
- Input traffic = VF x actual number of vehicles represented by segment

Roadway Length (feet)	Modeled Speed (mph)	Volume Factor						
10	1	528.0						
100	1	52.8						
500	1	10.6						
Calculate VF for any roadway length as: VF = (10/L) * 528								

where L = Roadway Length in feet

Modeling stationary sources (Example 3)

Each truck parking area modeled as a line source

Roadway segment lengths determined by actual geometry of parking areas

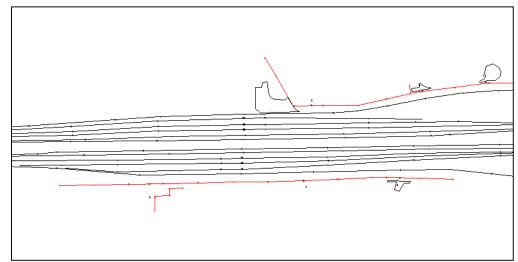
- VFs determined by segment lengths
- Input traffic = VF x number of trucks per area

Stationary sources: Advanced Approach

- Use to model a stationary source other than standard TNM vehicle type
- Conduct emission level measurements (Measurements of Highway-Related Noise, Report No. FHWA-PD-96-046 and DOT-VNTSC-FHWA-96-5, May 1996) and then create user-defined vehicle type within TNM
- TNM requires three coefficients (A, B, and C) to define emission level curve. For a stationary vehicle, A=B=0 and C is the measured emission level at 50 feet
- Once user-defined vehicle has been created, proceed using the standard approach

Modeling accel. and decel. traffic

- Weigh stations, park and ride lots, and service plazas: vehicles entering and departing the facility
 - Entrance/exit ramp to a limited-access roadway
 - Vehicles within facility, e.g., buses at park-and-ride lot
- Toll plazas: vehicles decelerating from/accelerating to cruise before/after passing through the toll barrier
 - Toll tickets: all vehicles to/from 0 mph
 - Electronic tolling: some reduced speed >0 mph


Additional guidance for modeling accelerating/decelerating vehicles included in NCHRP Report 791: Signalized Interchanges; Intersections; and Roundabouts

Accel./decel. vehicles: development/validation

- Uses existing elements: TNM for accel., NCHRP 311 (Predicting Stop-and-Go Traffic Noise Levels) for decel. and stopand-go
- Coordination with other topic areas
- Toll plaza validation with existing data

Accelerating traffic

- Use TNM's "flow control" feature
- Entrance ramps to limited-access roadways (traffic departing weigh stations, park and ride lots, service plazas, etc.):
 - Control Device: Onramp
 - Vehicles Affected (%): 100
 - Speed Constraint: 10 mph
- Traffic accelerating away from toll plazas:
 - Control Device: Toll
 - Vehicles Affected (%): 100
 - Speed Constraint: 0 mph if toll-ticket lane; average speed through barrier if electronic toll lane

Decelerating traffic – exit ramps

- Based on NCHRP 311 and other sections of NCHRP 791
- Under free-flow conditions, traffic entering weigh stations, park and ride lots, service plazas, etc.:
 - Divide ramp into two decel. "Zones of Influence" (ZOI)
 - Use table to determine modeled speed for each ZOI

Decel. Range (mph)		Length (ft)		Speed ZOI(1) (mph)			Speed ZOI(2) (mph)				
S _{initial}	S _{final}	ZOI(1)*	ZOI(2)**	Autos	МТ	HT	Autos	МТ	нт		
60	0	500	100	50	40	35	20	20	20		
60	30	500	none	50	40	35	n/a	n/a	n/a		
*Starting from end of ZOI(2) **Starting from point of S _{final} and proceeding upstream											

Decelerating traffic – toll plazas

- Under free-flow conditions, decelerating traffic approaching toll plazas:
 - Divide affected roadways into deceleration ZOIs working backwards from point where final speed is reached
 - When a queue forms at a toll plaza, endpoint of ZOI(2) is located at average end of the queue
 - Using table, determine appropriate modeled speed for each ZOI roadway

Mixed tolls: electronic and ticket lanes

- Due to higher speeds, electronic toll lanes may dominate overall sound level near combined electronic/ticket toll plazas
- Relative contribution to overall sound level depends on many factors including:
 - Traffic volume in each type of lane
 - Traffic mix in each type of lane, especially HT percentage
 - Average speed of vehicles in electronic lanes
 - Distance to toll plaza
 - Relative distance to different types of lanes

Rules of thumb: electronic and ticket lanes

- Ticket lanes and reduced-speed electronic lanes:
 - Minimum speed in electronic lanes ≤ 30 mph and volume in electronic lane(s) ≥ volume in ticket lane(s), model all vehicles as if in electronic lanes
- Ticket lanes and high-speed open road tolling lanes:
 - Volume of vehicles in electronic lane(s) at least 2x volume in ticket lane(s), model all vehicles as if in electronic lanes
- Typical error < 1 dBA</p>
- If in doubt, model traffic in different types of lanes separately

(Assumptions: HT percentages ranging from 4% to 10%, same vehicle mix in both electronic and ticket lanes, both types of lanes equidistant from prediction points. Substantial deviations from these parameters may provide different outcomes.)

Stop-and-Go Traffic (Queues)

 NCHRP 311: stop-and-go traffic increases heavy truck emission levels by ~ 3 dBA (vs. free-flow decel. or idling)

- Emission levels for other stop-and-go vehicle types significantly lower than HTs, typically not necessary to model other vehicles in queues
 - In general, if HTs at least 1% of total traffic volume, HTs will dominate Leq of vehicles in the queue
 - Exception: queues in facilities, such as parkways, with no HTs; may use similar methodology for autos

Stop-and-Go Traffic (Queues)

- Follow "Stationary Sources, Standard Approach" with 3-dBA adjustment for higher emission level of stop-and-go traffic:
 - Determine average queue length
 - Determine volume factor (compute or use table)
 - Determine average number of vehicles in queue
 - Compute modeled volume (VF x Average Number in Queue)
 - Include 3-dBA stop-and-go adjustment: multiply computed volume by 2 (doubling traffic volume increases modeled Leq by 3 dBA)

Modeled Volume = VF x Average Number in Queue x 2

Summary

- Modeling area sources with TNM requires special techniques
- NCHRP Report 791 provides guidance for toll plazas, service plazas, park-and-ride lots, weigh stations, etc.
 - Stationary sources: standard and advanced approaches
 - Accelerating vehicles: use TNM features
 - Decelerating vehicles: use NCHRP 311 Zone of Influence (ZOI) approach
 - Stop-and-go traffic (queues): combine stationary source methodology with NCHRP 311 adjustment
- In some cases, detailed modeling may not be necessary

Questions?

Contact: Doug Barrett Sanchez Industrial Design Inc. dbarrett@sid-inc.com

